Newton's $2^{\text {nd }}$ Law of Motion and Weight

SPH4C

If the net force on an object is not zero, the object will be \qquad in the
\qquad of the \qquad :
i.e. the more massive the object, the \qquad it is to change its motion (the higher its \qquad).

This equation can be rearranged:

The formula $F=m a$ can also be used to calculate the weight \qquad of an object, the magnitude of the force of \qquad acting on it, if the acceleration a is the
\qquad :

Weight is therefore measured in \qquad .

Example: What is the weight of a 140 kg person?

More Practice

The weight of an object $F_{g}=m g$ where g is the magnitude of the acceleration due to gravity. Calculate the weight of the objects of given mass below.
(a) oxygen gas molecule: $5.356 \times 10^{-26} \mathrm{~kg}$
(b) penny: 0.00235 kg
(c) tennis ball: 0.057 kg
(d) Ms. Rosebery: 61 kg
(e) newborn elephant: 105 kg

